Coldest brown dwarf found nearby


This artist’s conception shows the object named WISE J085510.83-071442.5, the coldest known brown dwarf. It is as cold as the North Pole. This celestial orb is also the fourth closest to our sun, at 7.2 light-years from Earth. Credit: NASA/JPL-Caltech/Penn State University
This artist’s conception shows the object named WISE J085510.83-071442.5, the coldest known brown dwarf. It is as cold as the North Pole. This celestial orb is also the fourth closest to our sun, at 7.2 light-years from Earth. Credit: NASA/JPL-Caltech/Penn State University

NASA’s Wide-field Infrared Survey Explorer (WISE) and Spitzer Space Telescope have discovered what appears to be the coldest brown dwarf known – a dim, star-like body that surprisingly is as frosty as Earth’s North Pole.

Images from the space telescopes also pinpointed the object’s distance to 7.2 light-years away, earning it the title for fourth closest system to our sun. The closest system, a trio of stars, is Alpha Centauri, at about 4 light-years away.

“It’s very exciting to discover a new neighbor of our solar system that is so close,” said Kevin Luhman, an astronomer at Pennsylvania State University’s Center for Exoplanets and Habitable Worlds, University Park. “And given its extreme temperature, it should tell us a lot about the atmospheres of planets, which often have similarly cold temperatures.”

Brown dwarfs start their lives like stars, as collapsing balls of gas, but they lack the mass to burn nuclear fuel and radiate starlight. The newfound coldest brown dwarf is named WISE J085510.83-071442.5. It has a chilly temperature between minus 54 and 9 degrees Fahrenheit (minus 48 to minus 13 degrees Celsius). Previous record holders for coldest brown dwarfs, also found by WISE and Spitzer, were about room temperature.

WISE was able to spot the rare object because it surveyed the entire sky twice in infrared light, observing some areas up to three times. Cool objects like brown dwarfs can be invisible when viewed by visible-light telescopes, but their thermal glow – even if feeble – stands out in infrared light. In addition, the closer a body, the more it appears to move in images taken months apart. Airplanes are a good example of this effect: a closer, low-flying plane will appear to fly overhead more rapidly than a high-flying one.

This diagram illustrates the locations of the star systems closest to the sun.Credit: NASA/Penn State University
This diagram illustrates the locations of the star systems closest to the sun. Credit: NASA/Penn State University

“This object appeared to move really fast in the WISE data,” said Luhman. “That told us it was something special.”

Combined detections from WISE and Spitzer, taken from different positions around the sun, enabled the measurement of its distance through the parallax effect. This is the same principle that explains why your finger, when held out right in front of you, appears to jump from side to side when you alternate left- and right-eye views.

“It is remarkable that even after many decades of studying the sky, we still do not have a complete inventory of the sun’s nearest neighbors,” said Michael Werner, the project scientist for Spitzer at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. “This exciting new result demonstrates the power of exploring the universe using new tools, such as the infrared eyes of WISE and Spitzer.”

WISE J085510.83-071442.5 is estimated to be 3 to 10 times the mass of Jupiter. With such a low mass, it could be a gas giant similar to Jupiter that was ejected from its star system. But scientists estimate it is probably a brown dwarf rather than a planet since brown dwarfs are known to be fairly common. If so, it is one of the least massive brown dwarfs known.

This article appeared in the 7th issue of RocketSTEM magazine.

Download PDF    Issuu Reader    Buy Print Edition

Previous ‘Club sandwich’ of oceans and ice may exist within Jovian moon
Next Venus Express gets ready to take the plunge